
28、EMI的問題和信號完整性的問題,是相互關聯的,如何在定義標準的過程中,平衡兩者?
答:信號完整性和EMC還處于草案中不便于公開,至信號完整性和EMI兩者如何平衡,這不是測試規范的事,如果要達到二者平衡,最好是降低通信速度,但大家都不認可。
29、PCB設計中如何盡可能的達到EMC要求,又不致造成太大的成本壓力?
答:PCB板上會因EMC而增加的成本通常是因增加地層數目以增強屏蔽效應及增加了ferrite bead、choke等抑制高頻諧波器件的緣故。除此之外,通常還是需搭配其它機構上的屏蔽結構才能使整個系統通過EMC的要求。以下僅就PCB板的設計技巧提供幾個降低電路產生的電磁輻射效應。
1、盡可能選用信號斜率(slew rate)較慢的器件,以降低信號所產生的高頻成分。
2、注意高頻器件擺放的位置,不要太靠近對外的連接器。
3、注意高速信號的阻抗匹配,走線層及其回流電流路徑(return current path), 以減少高頻的反射與輻射。
4、在各器件的電源管腳放置足夠與適當的去耦合電容以緩和電源層和地層上的噪聲。特別注意電容的頻率響應與溫度的特性是否符合設計所需。
5、對外的連接器附近的地可與地層做適當分割,并將連接器的地就近接到chassis ground。
6、可適當運用ground guard/shunt traces在一些特別高速的信號旁。但要注意guard/shunt traces對走線特性阻抗的影響。
7、電源層比地層內縮20H,H為電源層與地層之間的距離。
30、PCB設計中當一塊PCB板中有多個數/模功能塊時,常規做法是要將數/模地分開,原因何在?
答:將數/模地分開的原因是因為數字電路在高低電位切換時會在電源和地產生噪聲,噪聲的大小跟信號的速度及電流大小有關。如果地平面上不分割且由數字區域電路所產生的噪聲較大而模擬區域的電路又非常接近,則即使數模信號不交叉, 模擬的信號依然會被地噪聲干擾。也就是說數模地不分割的方式只能在模擬電路區域距產生大噪聲的數字電路區域較遠時使用。
31、在高速PCB設計時,設計者應該從那些方面去考慮EMC、EMI的規則呢?
答:一般EMI/EMC設計時需要同時考慮輻射(radiated)與傳導(conducted)兩個方面. 前者歸屬于頻率較高的部分(>30MHz)后者則是較低頻的部分(<30MHz). 所以不能只注意高頻而忽略低頻的部分.一個好的EMI/EMC設計必須一開始布局時就要考慮到器件的位置, PCB迭層的安排, 重要聯機的走法, 器件的選擇等, 如果這些沒有事前有較佳的安排, 事后解決則會事倍功半, 增加成本. 例如時鐘產生器的位置盡量不要靠近對外的連接器, 高速信號盡量走內層并注意特性阻抗匹配與參考層的連續以減少反射, 器件所推的信號之斜率(slew rate)盡量小以減低高頻成分, 選擇去耦合(decoupling/bypass)電容時注意其頻率響應是否符合需求以降低電源層噪聲. 另外, 注意高頻信號電流之回流路徑使其回路面積盡量小(也就是回路阻抗loop impedance盡量小)以減少輻射. 還可以用分割地層的方式以控制高頻噪聲的范圍. 最后, 適當的選擇PCB與外殼的接地點(chassis ground)。
32、PCB設計時,怎樣通過安排迭層來減少EMI問題?
答:首先,EMI要從系統考慮,單憑PCB無法解決問題。層疊對EMI來講,我認為主要是提供信號最短回流路徑,減小耦合面積,抑制差模干擾。另外地層與電源層緊耦合,適當比電源層外延,對抑制共模干擾有好處。
33、PCB設計時,為何要鋪銅?
答:一般鋪銅有幾個方面原因:
1,EMC.對于大面積的地或電源鋪銅,會起到屏蔽作用,有些特殊地,如PGND起到防護作用。
2,PCB工藝要求。一般為了保證電鍍效果,或者層壓不變形,對于布線較少的PCB板層鋪銅。
3,信號完整性要求,給高頻數字信號一個完整的回流路徑,并減少直流網絡的布線。
當然還有散熱,特殊器件安裝要求鋪銅等等原因。
34、安規問題:FCC、EMC的具體含義是什么?
答: FCC: federal communication commission 美國通信委員會;EMC: electro megnetic compatibility 電磁兼容。FCC是個標準組織,EMC是一個標準。標準頒布都有相應的原因,標準和測試方法。
35、在做pcb板的時候,為了減小干擾,地線是否應該構成閉和形式?
答:在做PCB板的時候,一般來講都要減小回路面積,以便減少干擾,布地線的時候,也不 應布成閉合形式,而是布成樹枝狀較好,還有就是要盡可能增大地的面積。
36、PCB設計中,如何避免串擾?
答:變化的信號(例如階躍信號)沿傳輸線由A到B傳播,傳輸線C-D上會產生耦合信號,變化的信號一旦結束也就是信號恢復到穩定的直流電平時,耦合信號也就不存在了,因此串擾僅發生在信號跳變的過程當中,并且信號沿的變化(轉換率)越快,產生的串擾也就越大。空間中耦合的電磁場可以提取為無數耦合電容和耦合電感的集合,其中由耦合電容產生的串擾信號在受害網絡上可以分成前向串擾和反向串擾Sc,這個兩個信號極性相同;由耦合電感產生的串擾信號也分成前向串擾和反向串擾SL,這兩個信號極性相反。耦合電感電容產生的前向串擾和反向串擾同時存在,并且大小幾乎相等,這樣,在受害網絡上的前向串擾信號由于極性相反,相互抵消,反向串擾極性相同,疊加增強。串擾分析的模式通常包括默認模式,三態模式和最壞情況模式分析。默認模式類似我們實際對串擾測試的方式,即侵害網絡驅動器由翻轉信號驅動,受害網絡驅動器保持初始狀態(高電平或低電平),然后計算串擾值。這種方式對于單向信號的串擾分析比較有效。三態模式是指侵害網絡驅動器由翻轉信號驅動,受害的網絡的三態終端置為高阻狀態,來檢測串擾大小。這種方式對雙向或復雜拓樸網絡比較有效。最壞情況分析是指將受害網絡的驅動器保持初始狀態,仿真器計算所有默認侵害網絡對每一個受害網絡的串擾的總和。這種方式一般只對個別關鍵網絡進行分析,因為要計算的組合太多,仿真速度比較慢。
37、在EMC測試中發現時鐘信號的諧波超標十分嚴重,只是在電源引腳上連接去耦電容。在PCB設計中需要注意哪些方面以抑止電磁輻射呢?
答: EMC的三要素為輻射源,傳播途徑和受害體。傳播途徑分為空間輻射傳播和電纜傳導。所以要抑制諧波,首先看看它傳播的途徑。電源去耦是解決傳導方式傳播,此外,必要的匹配和屏蔽也是需要的。
38、在PCB設計中,通常將地線又分為保護地和信號地;電源地又分為數字地和模擬地,為什么要對地線進行劃分?
答:劃分地的目的主要是出于EMC的考慮,擔心數字部分電源和地上的噪聲會對其它信號,特別是模擬信號通過傳導途徑有干擾。至于信號的和保護地的劃分,是因為EMC中ESD靜放電的考慮,類似于我們生活中避雷針接地的作用。無論怎樣分,最終的大地只有一個。只是噪聲瀉放途徑不同而已。
39、PCB設計中,在布時鐘時,有必要兩邊加地線屏蔽嗎?
答:是否加屏蔽地線要根據板上的串擾/EMI情況來決定,而且如對屏蔽地線的處理不好,有可能反而會使情況更糟。
40、近端串擾和遠端串擾與信號的頻率和信號的上升時間是否有關系?是否會隨著它們變化而變化?如果有關系,能否有公式說明它們之間的關系?
答:應該說侵害網絡對受害網絡造成的串擾與信號變化沿有關,變化越快,引起的串擾越大,(V=L*di/dt)。串擾對受害網絡上數字信號的判決影響則與信號頻率有關,頻率越快,影響越大。
41、在設計PCB板時,有如下兩個疊層方案: 疊層1 》信號 》地 》信號 》電源+1.5V 》信號 》電源+2.5V 》信號 》電源+1.25V 》電源+1.2V 》信號 》電源+3.3V 》信號 》電源+1.8V 》信號 》地 》信號 疊層2 》信號 》地 》信號 》電源+1.5V 》信號 》地 》信號 》電源+1.25V +1.8V 》電源+2.5V +1.2V 》信號 》地 》信號 》電源+3.3V 》信號 》地 》信號 哪一種疊層順序比較優選?對于疊層2,中間的兩個分割電源層是否會對相鄰的信號層產生影響?這兩個信號層已經有地平面給信號作為回流路徑。
答:應該說兩種層疊各有好處。第一種保證了平面層的完整,第二種增加了地層數目,有效降低了電源平面的阻抗,對抑制系統EMI有好處。 理論上講,電源平面和地平面對于交流信號是等效的。但實際上,地平面具有比電源平面更好的交流阻抗,信號優選地平面作為回流平面。但是由于層疊厚度因素的影響,例如信號和電源層間介質厚度小于與地之間的介質厚度,第二種層疊中跨分割的信號同樣在電源分隔處存在信號回流不完整的問題。
聲明:本內容為作者獨立觀點,不代表電源網。本網站原創內容,如需轉載,請注明出處;本網站轉載的內容(文章、圖片、視頻)等資料版權歸原作者所有。如我們采用了您不宜公開的文章或圖片,未能及時和您確認,避免給雙方造成不必要的經濟損失,請電郵聯系我們,以便迅速采取適當處理措施;歡迎投稿,郵箱∶editor@netbroad.com。
微信關注 | ||
![]() |
技術專題 | 更多>> | |
![]() |
技術專題之EMC |
![]() |
技術專題之PCB |