

概述

QX6103 是一款高精度降压型大功率 LED 恒流驱动芯片。适用于输入电压 100V 以内的大功率 LED 恒流驱动电源。

专利的高端电流检测、固定频率、电流模 PWM 控制方式,具有优异的线性调整率和负载调整率。

芯片采用的特有恒流控制方式,使得 LED 输出电流精度达到±3%以内。

芯片内部集成的抖频功能可降低 EMI 成本。

内置环路补偿与斜坡补偿,无需外部 补偿,应用设计简单。

芯片典型工作频率约 200KHz。

OX6103 采用 SOT23-5 封装。

特点

- ▶ 高端电流检测
- ▶ 输出电流: 小于 3A
- ➤ 输入电压: 6~100V
- ➤ LED 均值电流控制: 恒流效果好
- ➤ LED 输出电流精度: ±3%
- ▶ 高效率:最高可达95%以上
- ▶ 电流模 PWM 控制
- ▶ 固定工作频率
- ▶ 抖频功能
- ▶ 内置环路补偿、斜坡补偿
- ▶ 芯片供电欠压/过压保护

应用领域

▶ LED 车灯、路灯及其它 LED 照明

典型应用电路图

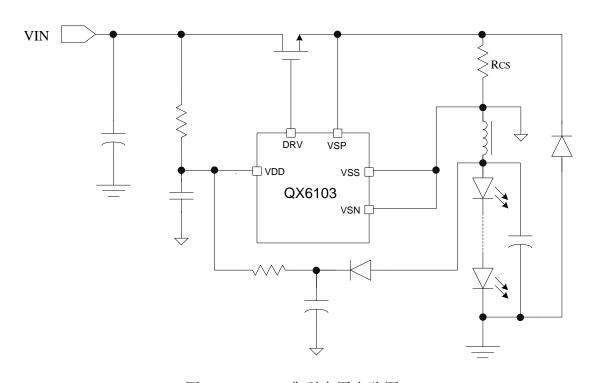
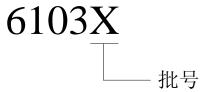
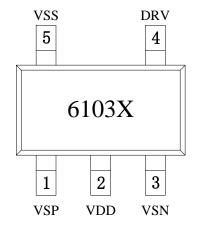


图 1: QX6103 典型应用电路图



订货信息


产品型号

QX6103

丝印

封装及管脚分配

SOT23-5

管脚定义

管脚号	管脚名称	管脚类型	描述	
1	VSP	输入	接电流采样电阻正电位端	
2	VDD	电源	芯片电源	
3	VSN	输入	接电流采样电阻负电位端	
4	DRV	输出	输出驱动端,接 MOS 管栅极	
5	VSS	地	芯片地	

内部电路方框图

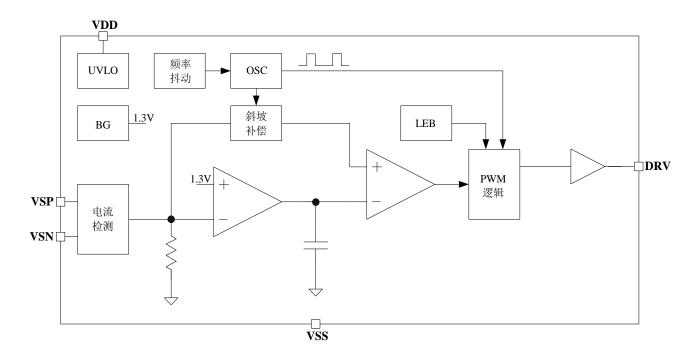


图 2: QX6103 的内部电路方框图

极限参数(注1)

参数	符号	描述	最小值	最大值	单位
电压	V _{MAX}	所有管脚最大电压值	-0.3	6	V
电流	I _{VDD_MAX}	VDD 引脚最大电源电流		15	mA
	I _{DRV_MAX}	DRV 引脚最大电流		500	mA
功耗	P _{SOT23-5}	SOT23-5 封装的最大功耗		0.25	W
温度	T_{J}	结温范围	-20	125	°C
	T_{A}	工作范围	-20	85	°C
	T_{STG}	存储温度范围	-40	120	°C
	T_{SD}	焊接温度范围 (焊接时间少于 30 秒)	230	240	°C
ESD	V _{ESD}	静电耐压值(人体模型)		2000	V

注 1: 超过上表中规定的极限参数会导致器件永久性损坏,而工作在以上极限条件下可能会影响器件的可靠性。

电特性

除非特别说明, T_A=25°C

参数	符号	测试条件	最小值	典型值	最大值	单位	
电源电压							
工作电压	V_{DD}			5		V	
启动电压阈值	$V_{\mathrm{DD_ON}}$	V _{DD} 上升	4.8	5	5.2	V	
欠压保护阈值	$V_{\mathrm{DD_UVLO}}$	V _{DD} 下降	3.8	4	4.2	V	
钳位电压	$V_{\mathrm{DD_CLAMP}}$			5.5		V	
电源电流							
启动电流	I _{STARTUP}	V _{DD} =4V		10		uA	
静态电流	I _{STANDBY}			0.7		mA	
电感电流采样							
电流检测电阻 两端电压均值	$V_{ m SEN}$		194	200	206	mV	
限流值	V _{SEN_LMT}			520		mV	
前沿消隐时间	T_{LEB}			200		ns	
OSC 工作频率							
典型工作频率	F _{OSC}			200		KHz	
抖频范围	$\Delta F_{ m OSC}$		-3		3	%	
输出驱动							
上升时间	T_R	C _L =1nF		60		ns	
下降时间	T_{F}	C _L =1nF		60		ns	

应用指南

概述

QX6103 是一款高精度降压型大功率 LED 恒流驱动芯片。输出电流可达 3A 以 上。

芯片采用专利的高端电流检测、固定 频率、电流模 PWM 控制方式,具有优异 的线性调整率和负载调整率。

芯片內置频率补偿与斜坡补偿,无需外部补偿。QX6103还集成了抖频功能,以改善系统的 EMI 特性。

QX6103 内部集成了多重保护功能, 包括 LED 短路保护,逐周期限流保护,输 入供电欠压保护及电源箝位等功能。

LED 工作电流设定

LED 电流由接在 VSP 与 VSN 引脚之间的电阻 R_{CS} 设置:

$$I_{LED} = \frac{V_{SEN}}{R_{CS}}$$

其中, V_{SEN} 典型值为 200mV。

电感选择

在输入电压、输出电压以及输出电流 已定的条件下,电感值决定了电感电流纹 波大小以及连续或非连续工作模式。工作 于临界模式时的电感值为:

$$Lcri = \frac{Vo*(Vi-Vo)}{2Vi*I_{LED}*fs}$$

当采用无输出电容的方案时,应选择稍大的电感值,以使得电感电流工作在连续模式,减小LED上的电流纹波。当LED两端并联有输出电容时,系统既可以工作在连续模式也可以工作在非连续模式。

芯片供电

芯片在 TOFF 期间通过辅助供电电阻 对芯片供电。应合理选择供电电阻的取值, 保证供电电流大于芯片工作电流,同时供 电电流也不宜超过 12mA,否则会超过芯 片电源引脚的箝位能力并可能导致芯片过 热。

PCB 设计

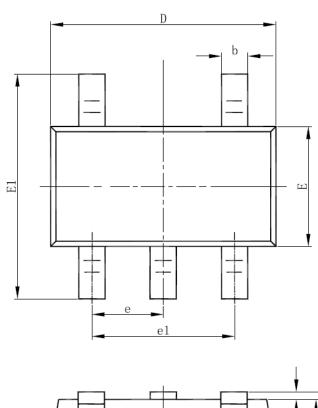
在设计 PCB 时应遵循以下指南:

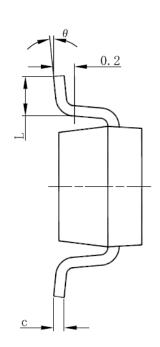
(1)旁路电容

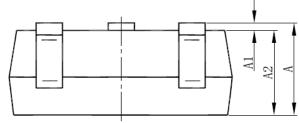
VDD 的旁路电容需要紧靠芯片的 VDD 和 VSS 引脚。

(2)地线

电流采样引脚 VSN 需要用单独的走 线连接至电流采样电阻的一端。芯片地以 及其它信号地应分头接到旁路电容的地 端。


(3)功率环路


减小功率环路的面积,可减小 EMI 辐射。



封装信息

SOT23-5 封装尺寸图:

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

声明

- ▶ 泉芯保留电路及其规格书的更改权,以便为客户提供更优秀的产品,规格若有更改,恕不 另行通知。
- ▶ 泉芯公司一直致力于提高产品的质量和可靠性,然而,任何半导体产品在特定条件下都有一定的失效或发生故障的可能,客户有责任在使用泉芯产品进行产品研发时,严格按照对应规格书的要求使用泉芯产品,并在进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险造成人身伤害或财产损失等情况。如果因为客户不当使用泉芯产品而造成的人身伤害、财产损失等情况,泉芯公司不承担任何责任。
- ▶ 本产品主要应用于消费类电子产品中,如果客户将本产品应用于医疗、军事、航天等要求极高质量、极高可靠性的领域的产品中,其潜在失败风险所造成的人身伤害、财产损失等情况,泉芯公司不承担任何责任。
- ▶ 本规格书所包含的信息仅作为泉芯产品的应用指南,没有任何专利和知识产权的许可暗示,如果客户侵犯了第三方的专利和知识产权,泉芯公司不承担任何责任。

客户服务中心

泉芯电子技术(深圳)有限公司

地址:中国深圳市南山区南头关口二路智恒新兴产业园 22 栋 4 楼

邮编: 518052

电话: +86-0755-88852177

传真: +86-0755-86350858

网址: www.qxmd.com.cn