


# 功率二极管在电源里的损耗分析和选型原则









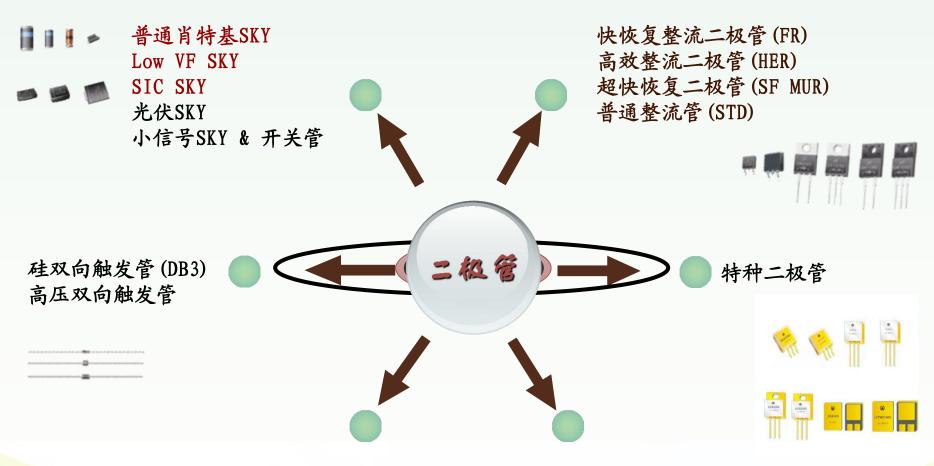
### 秘洪亮

- ◎济南晶恒总工程师
- ◎山东大学客産教授
- ◎从事往导体制造业26年



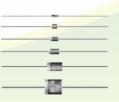





### 济南晶恒电子

- 往导体分立元器件研发制造商
- 国家定点军工科研单位
- 58年3 导体科研和生产历史






### 济南晶恒二极管系列产品





整流桥 肖特基整流桥 稳压管 (ZENER) 瞬变电压抑制二极管 (TVS) ESD





### 目录

01 二极管损耗组成

02 二极管损耗分析

03 应用实例1,Flyback电源电路二极管损耗分析

04 应用实例2,BOOST电路二极管损耗分析

05 晶恒二极管在电源效率提升中的应用

### 二极管损耗组成

二极管损耗由以下三部分组成:

1 通态损耗Pc

2 截止损耗Pb

3 开关损耗Ps

总损耗PD=Pc+Pb+Ps

### 二极管损耗分析

1

### 通态损耗Pc

定义:二极管导通状态下产生的损耗。

公式: (1) 若二极管正向电流为直流IF:

 $Pc=I_F \times V_F$ 

I<sub>F</sub>:二极管电流

V<sub>F</sub>: 二极管正向压降(@IF)



设脉动周期为T, 从图1看出, VF是iF的函数, 记为: VF=f(iF)在一个周期内, 二极管的通态损耗为

$$\mathsf{Pc} = \frac{1}{T} \int_0^T V_F(t) I_F(t) dt$$

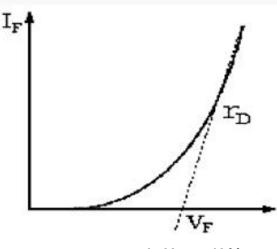
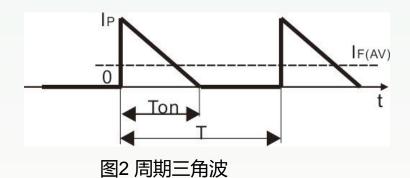




图1 二极管V<sub>F</sub>-I<sub>F</sub>特性

### 1 通态损耗Pc

Pc计算: 以二极管电流i<sub>F</sub>(t)为周期三角波为例,计算Pc。



其中:Ton:二极管导通时间

T:电流周期

I<sub>P</sub>:峰值电流

 $I_{F(AV)}$ :平均电流

规定:占空比D=Ton/T

那么,  $i_F(t)=I_P(1-t/ton)$  t=0-ton

 $i_F(t)=0$  t=ton-T



#### 下面我们来看看V<sub>F</sub>-I<sub>F</sub>的关系

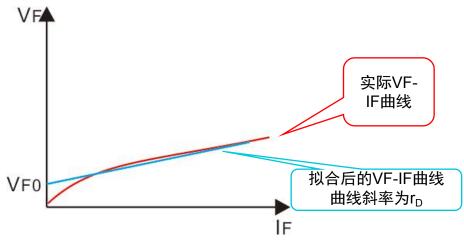



图3 实际二极管V<sub>F</sub>-I<sub>F</sub>特性

如上图的 $V_{F}$ - $I_{F}$ 特性,可以把该曲线近似为直线。曲线的斜率为 $I_{D}$ ,即二极管的动态内阻, $V_{F0}$ 为二极管起始电压。

那么: $V_F(t)=V_{F0}+r_D\times i_F(t)$ 二极管在一个周期内的损耗

$$Pc = \frac{1}{T} \int_0^T V_F(t) i_F(t) dt = \frac{1}{T} \int_0^T (V_{F0} + r_D i_F) i_F dt$$
$$= V_{F0} \times \frac{1}{T} \int_0^T i_F dt + r_D \times \frac{1}{T} \int_0^T (i_F \times i_F) dt$$

#### 可以看出:

(1)  $\frac{1}{T} \int_0^T i_F dt$  为二极管电流在一个周期内的平均值,记为 $I_{F(AV)}$ ,

得到:I<sub>F(AV)</sub>=1/2×I<sub>P</sub>×D。 I<sub>F(AV)</sub>为电源输出电流Io。

(2)  $\frac{L}{I} \int_0^T (i_F \times i_F) dt$ 为二极管电流<mark>有效值的平方</mark>,记为 $I_F^2_{(RMS)}$ ,

得到:
$$I_{F(RMS)} = I_{P} \times \sqrt{D/3}$$

得出结论,周期三角波的二极管通态损耗公式为:

$$\begin{split} &\text{Pc=V}_{\text{F0}} \times \text{I}_{\text{F(AV)}} + \text{R}_{\text{D}} \times \text{I}_{\text{F}}^{2}_{\text{(RMS)}} \\ &\text{I}_{\text{F}}(\text{AV}) = 1/2 \times \text{I}_{\text{P}} \times \text{D} \\ &\text{I}_{\text{F(RMS)}} = \text{I}_{\text{P}} \times \sqrt{\text{D}/3} \ = 2\text{Io/D} \times \ \sqrt{\text{D}/3} \end{split}$$



### 1 通态损耗Pc

### V<sub>F0</sub>、r<sub>D</sub>的计算举例:

 $r_D$ :在电流较大时( $\geq 1A$ ),  $V_{F}$ - $I_{F}$ 曲线可近似看做为直线。 $r_D$ 一般只有几毫欧到几十毫欧。可以通过 $V_{F}$ - $I_{F}$ 曲线近似计算 $r_D$ 。

如:对于晶恒的JF SR5100SL, 5A100V SUPER Low VF SKY DIODE。 各电流下的VF为, 6A:0.57V, 5A:0.54V, 4A:0.51V, 3A:0.48V, 2A:0.44V, 1A:0.40V。

 $r_D = \Delta V_F / \Delta I_F \approx (0.54-0.44)/(5-2) = 0.033(\Omega) = 33m\Omega$ 

V<sub>F0</sub>: 以Io=3A,V<sub>F</sub>=0.48V,计算

 $V_{F0} = V_F - r_D \times Io = 0.48 - 0.033 \times 3 \approx 0.38 V$ 

由此可见,当输出电流较大时,rp的影响还是很大的。



### 2 截止损耗Pb

定义:二极管反向截止时,由反向漏电流IR和反向截止电压VR引起的损耗。

公式: P<sub>b</sub>=V<sub>R</sub>×I<sub>R</sub>

公式说明:

#### 1)PN结二极管(FRD、STD类)

常温(25°C)时: IR基本小于1uA, Pb很小;

高温 (如:125℃)时,IR也在50uA以下,Pb最多几十mW。

#### 2) 肖特基二极管

常温(25°C)时:IR在几十uA,由于VR小(≤300V),Pb可忽略。

高温时(100℃)时:常用Si基肖特基二极管IR在几mA-几十mA级,

如:5A40VSKY,IR=5mA,Pb=200mW。Pb的影响就大了。

对于Pb,关注高温下肖特基类二极管的情况。

### 3 开关损耗Ps

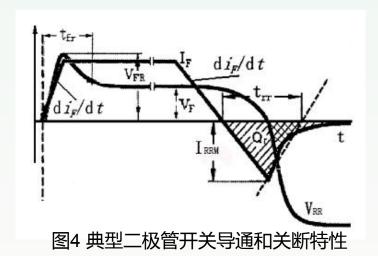
定义:二极管执行开和关动作时产生的损耗。由两部分组成,

- (1) 是二极管从截止状态到导通状态时的开通损耗Pon;
- (2)是二极管从导通状态到反向截止状态时的关断损耗Poff。 而Poff又由二极管关断时ta反向恢复期间损耗Poffa和tb反向恢复期间损耗 Poffb两部分组成。

公式: Ps=Pon+Poff
=Pon+Poffa+Poffb≈Pon+Poffb

#### 备注:

Pon= $1/2 \times I_{F(AV)} \times (V_{FR} - V_F) \times tfr/Ts$ 


Poffa=1/2×V<sub>F(AV)</sub>×I<sub>RRM</sub>×ta/Ts(通过后面分析,该项可省略)

Poffb= $1/4 \times V_{RR} \times I_{RRM} \times tb/Ts$ 

各参数定义后续说明。

### 3 开关损耗Ps

### 公式说明:



我们由图4的二极管开关特性来推导开通和关断损耗。

备注:

tfr:正向电压恢复时间 trr:反向恢复时间

 $V_{FR}$ :正向恢复最大电压  $I_{RRM}$ :最大反向恢复电流

 $V_F$ : 平均电流下的正向压降  $V_{RR}$ : 反向恢复电压

di<sub>F</sub>/dt:在开通和关断时的电流变化率 Qrr:存储电荷

(由外电路决定,假设相等)





### 把图2,开通过程的电流和电压波形进行理想化处理,得到图3的波形。

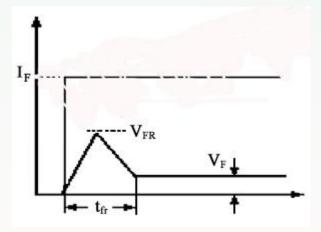



图3二极管开通时电压和电流理想波形

Pon= $1/2 \times I_F \times (V_{FR} - V_F) \times tfr/Ts$ 

其中,Ts为主开关管开关周期。





### 把图2的关断时刻电流和电压波形理想化处理,得到图4的波形。

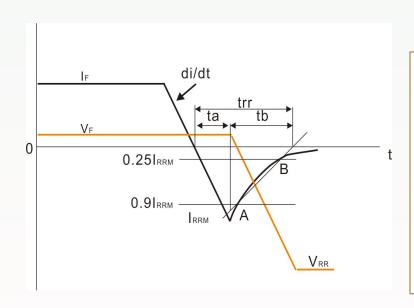



图4 二极管关断特性

ta:电流过零点到最大反向电流I<sub>RRM</sub>的时间。<mark>扫除存储电荷的时间。</mark>

tb:从I<sub>RRM</sub>到经过0.9I<sub>RRM</sub>A点)与0.25I<sub>RRM</sub>(B点)两点的直线与电流为零直线的交点直接所对应的时间。

V<sub>RR</sub>:反向恢复电压。

tb/ta:软度因子。反映二极管反向恢复特性的软硬

程度。



#### 假设:

在ta阶段反向电流I<sub>R</sub>线性增加,最大值为I<sub>RRM</sub>;

在tb期间I<sub>R</sub>线性减小到零,二极管上电压在tb时刻才开始线性上升,最大值为V<sub>RR</sub>。

ta期间的损耗(一个周期)为:

Poffa=
$$\frac{V_F}{T}\int_0^{tb} i_R dt$$
 =1/2× $V_F$ × $I_{RRM}$ ×ta/Ts

tb期间的损耗计算(一个周期)为:

Poffb= 
$$\frac{1}{T}\int_{0}^{b} i_{R}(t)V_{R}(t)dt = 1/4 \times V_{RR} \times I_{RRM} \times tb/Ts$$

注:对于ta期间损耗Poffa,由于ta/Ts在0.005左右,VF/2在1V以下,I<sub>RRM</sub>在几A到十几A,损耗一般在10mW以内,所以,关断损耗只计算tb期间的Poffb。





开关损耗PS等于开通损耗Pon 和关断损耗Poff 的和。

Ps=Pon+Poff

 $Ps=1/2\times I_F\times (V_{FR}V_F)\times tfr/Ts+1/4\times V_{RR}\times I_{RRM}\times tb/Ts$ 

列举一个例子,同样一台开关电源,选取不同种类的二极管,开关损耗哪个更小呢?让我们来计算一下吧!





#### 开关损耗Ps的计算

某开关电源规格为24V 3A。电源开关频率为50KHz (Ts=20000ns), 二极管反向电压V<sub>RR</sub>为120V。

### 方案A:输出整流管使用晶恒快恢复二极管JF MUR1020(10A200V)

MUR1060参数:tfr=50ns , tb=50ns , V<sub>F</sub>=0.9V , I<sub>RRM</sub>=5A

经计算: tfr/Ts=0.0025,

tb/Ts=0.0025,

VFR为5倍的VF,

**VFR-VF=3.6V** 

得出: Pon=13.5mW

Poff= 375mW

总开关损耗Ps=388.5mW





#### 开关损耗Ps的计算

### 方案B 输出整流管为晶恒肖特基SKY二极管, JF SR10200 (10A200V)

JF SR10200参数: tfr=20ns , tb=20ns , I<sub>RRM</sub>=1A , V<sub>F</sub>=0.8V

经计算: tfr/Ts=0.0025,

tb/Ts=0.001,

VFR为5倍的VF,

VFR-VF=3.2V

得出: Pon=4.8mW

Poff=30mW

总开关损耗Ps=39.6mW

结论:对于开关损耗Ps,肖特基二极管比快恢复二极管小的多。

### 应用实例1

# Flyback电源二极管损耗分析 (DCM模式)



### DCM模式下二极管损耗分析

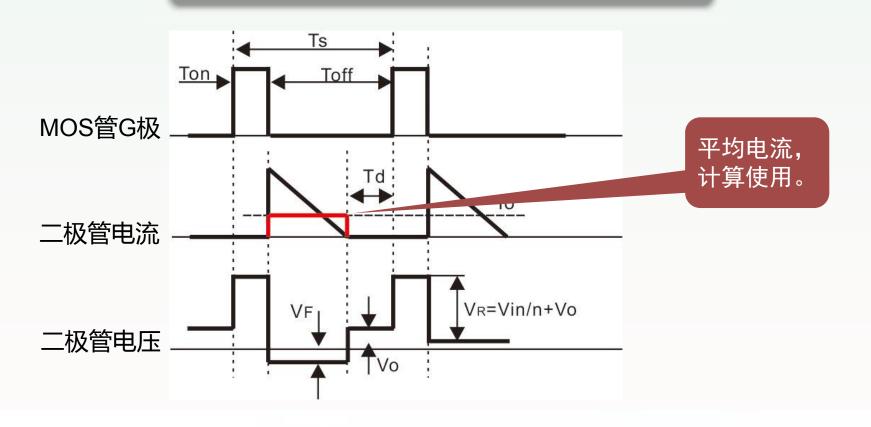



图7 Flyback电源DCM时的二次侧二极管的电压、电流波形



### DCM模式时二极管损耗计算

根据图7,结合前面的二极管损耗分析,可得到该模式下的二极管损

耗计算公式:

1) 通态损耗:  $P_C = V_{FO} \times I_O + r_D \times I_{F^2(RMS)}$ 

备注

 $I_O$ : 电源输出电流  $I_{F(RMS)}$ : 二极管电流有效值

 $V_{EO}$ :起始正向压降  $r_D$ : 动态电阻

该三角波的占空比D1= ( Toff-Td)/Ts 电流有效值 $I_{F(RMS)}$ =2 $I_{O}$ =2 $I_{O}$ =2 $I_{O}$ =1.15 $I_{O}$ × $I_{O}$ =1.15 $I_{O$ 



2) 截止损耗: Pb=V<sub>R</sub>×I<sub>R</sub>(@V<sub>R</sub>)×Ton/Ts+Vo×I<sub>R</sub>(@Vo)×Td/Ts

备注

 $V_R$ :二极管工作时实际反向电压  $I_R(@V_R):V_R$ 时的反向漏电流。

Ton:电源开关管导通时间 T<sub>s</sub>:电源开关周期

 $V_O$ : 电源输出电压  $I_R(@Vo): V_O$ 时的反向漏电流。

Td: 死区时间

3) 开关损耗: Ps= Pon+Poff

 $=1/2\times I_P\times (V_{FR}-V_F)\times tfr/Ts+1/4\times V_{RR}\times I_{RRM}\times tb/Ts$ 

备注

 $I_P$ :二极管峰值电流  $V_F$ : $I_O$ 电流下的正向压降

tfr: 正向电压恢复时间  $T_s:$  电源开关周期

 $V_{FR}$ :正向恢复最大电压  $V_{RR}$ :反向恢复电压

I<sub>RRM</sub>:最大反向恢复电流 tb:反向恢复时间tb部分

4) 二极管总损耗: P<sub>D</sub>=Pc+Pb+Ps



### 举例1: (5V低电压输出,输出整流管使用晶恒肖特基二极管)

开关电源规格为5V 2A ,工作于DCM模式,开关频率50KHz。 输出整流二极管使用晶恒肖特基二极管 JF SR540(5A 40V)。

#### 1) 电路工作条件

$$V_{O}$$
=5V ,  $I_{O}$ =2A , Ts=20000ns , Ton/Ts=0.3 , Td/Ts=0.2 , D1=(Toff-Td)/Ts=0.5,  $V_{R}$ =32V ,  $V_{RR}$ = $V_{O}$ =5V ,  $r_{D}$ =30m $\Omega$   $I_{F(RMS)}$ \*1.15 $I_{O}$ ×  $\sqrt{1/D1}$ =3.25A  $I_{D}$ =2 $I_{O}$ /D1=8A

2) 二极管参数 (假设二极管T<sub>J</sub>=100℃):

$$V_{F0}{=}0.43V$$
 ,  $I_R$  (  $@V_R){=}2mA$  ,  $I_R$  (  $@V_O$  ) =0.5mA tfr=20ns ,  $V_{FR}{=}5V_F$  , tb=20ns ,  $I_{RRM}{=}1A$ 

3) 损耗计算 ( T」=100℃ )

$$\begin{aligned} &\text{Pc=V}_{\text{F0}}\times I_{\text{O}} + r_{\text{D}}\times I_{\text{F}^{2}(\text{RMS})} = 860\text{mW} + 97.5\text{mW} = 957.5\text{mW} \\ &\text{Pb=V}_{\text{R}}\times I_{\text{R}} (@\text{V}_{\text{R}})\times \text{Ton/Ts} + \text{Vo}\times I_{\text{R}} (@\text{Vo})\times \text{Td/Ts} \\ &= 19.2 + 0.75 = 19.95\text{mW} \text{.} \\ &\text{Ps=Pon+Poff} \end{aligned}$$

=
$$1/2 \times I_P \times (V_{FR} - V_F) \times tfr/Ts + 1/4 \times V_{RR} \times I_{RRM} \times tb/Ts$$
  
= $6.88 + 1.25 = 8.13 \text{mW}$ 

#### 总损耗P<sub>D</sub>≈980mW



下面再计算二极管T<sub>J</sub>=125℃时的损耗,看看总损耗的变化。通过以上计算可知,Ps很小,为简化计算,不再计算。

#### 二极管 T<sub>1</sub>=125℃时参数为:

 $V_F = 0.41V$ ,  $V_R = 32V$ ,  $I_R$  ( @V<sub>R</sub>) = 10mA,  $I_R$  ( @V<sub>O</sub> ) = 2.5mA

#### 经计算:



#### 由此可见:

- DCM模式下,二极管的损耗主要来自通态损耗。使用肖特基二极管, 开关损耗可以忽略不计。截止损耗的第二项也可忽略不计。
- (02) 结温低时,截止损耗Pb影响不大。
- 03)随着结温的升高,Pb上升量超过了Pc下降量,总损耗上升。 若二极管散热不及时,容易造成热失控。



### 举例2: (24V高电压输出,整流管使用晶恒 快恢复二极管或肖特基二极管)

开关电源规格为24V 1A,工作在DCM模式,开关频率50KHz。

电路工作条件: Vo=24V, Io=1A, Ton/Ts=0.25, D1=(Toff-Td)/Ts=0.5,

Td/Ts=0.25, Ts=20000ns, VR=120V, VRR=Vo=24V

A:输出整流管为晶恒 快恢复二极管 JF HER304 (5A300V50ns)

A1:HER304参数(假设二极管T」=100℃)

 $V_F$ =0.90V ,  $I_R$  ( @ $V_R$ )=10uA ,  $I_R$  ( @ $V_{RR}$ )=2uA

tfr=50ns,  $V_{FR}$ =5 $V_{F}$ , tb=50ns, Irrm=2A

 $r_D = 50 \text{m}\Omega I_{F(RMS)} = 1.15 I_O \sqrt{1/D1} = 1.63 A$ 

A2:损耗计算 Pc=V<sub>F0</sub>×I<sub>O</sub>+r<sub>D</sub>×I<sub>F<sup>2</sup>(RMS)</sub>=0.9+0.13 =1.03W≈1000mW

 $Pb=V_R\times I_R(@V_R)\times Ton/Ts+Vo\times I_R(@Vo)\times Td/Ts$ 

 $=120\times10\times10^{-6}\times0.25+24\times2\times10^{-6}\times0.25$ 

=0.312mW

 $Ps=Pon+Poff=1/2\times I_p\times (V_{FR}-V_F)\times tfr/Ts+1/4\times V_{RR}\times I_{RRM}\times tb/Ts$ 

 $=1/2\times1\times4\times0.0025+1/4\times24\times2\times0.0025$ 

=35mW

总损耗P=Pc+Pb+Ps≈1035mW

结论:快恢复管的损耗也主要来自通态损耗Pc。DCM模式下,开关损耗很小。



B: 输出整流管为晶恒肖特基二极管 JF SR3200 (3A 200V)

B1: SR3200参数(假设二极管T」=100℃)

 $V_F$ =0.72 V ,  $I_R$  ( @ $V_R$ )=0.5mA ,  $I_R$  ( @ $V_0$  ) =0.1mA

 $r_D = 80 m\Omega$  ,  $I_{F(RMS)} = 1.63 A$ 

B2 : 损耗计算 Pc=V<sub>F</sub>×I<sub>O</sub>+r<sub>D</sub>×I<sub>F</sub><sup>2</sup><sub>(RMS)</sub>≈720mW+213mW=933mW

 $Pb=V_R\times I_R(@V_R)\times Ton/Ts+Vo\times I_R(@Vo)\times Td/Ts$ 

=15+0.6=15.6mW

对于 Ps,参考举例1,数值很小,不再计算。

总损耗P=Pc+Pb+Ps≈949mW

结论:同样规格的电源,使用肖特基二极管的损耗比快恢复二极管的损耗低。



### DCM二极管损耗分析总结

- 01 肖特基 快恢复二极管的损耗主要来自Pc。
- 02 满足设计条件下,尽量选用V<sub>F</sub>低的二极管。如肖特基二极管。
- 对肖特基二极管,高温时的截止损耗Pb虽然值不高,但上升速度超过通态损耗Pc,总损耗PD上升,能造成热失控。
- 04 对快恢复二极管,DCM模式下,开关损耗很小。



### DCM二极管损耗计算公式

### A: 肖特基二极管

$$Pc=V_{F0}\times I_{O}+r_{D}\times I_{F}^{2}_{(RMS)}$$
  
 $Pb=V_{R}\times I_{R}(@V_{R)}\times Ton/Ts$   
 $P_{D}=Pc+Pb$ 

### B: 快恢复二极管

$$Pc=V_F \times Io + r_D \times I_{F^2(RMS)}$$
  
 $Ps=1/4 \times V_{RR} \times I_{RRM} \times tb/Ts$  (必要时)  
 $P_D=Pc+Ps$ 

## 应用实例2

BOOST电路二极管损耗分析



### BOOST电路二极管损耗分析





### BOOST电路二极管损耗计算

以BOOST电路输出电压较高(如PFC电路)、输出功率较大的场合为例。

输出二极管为超快恢复二极管或SIC肖特基二极管。由于二极管在关断时要承受高反压(=Vo),开通时有较大的浪涌电流,开关损耗Ps计算公式先把Pon和Poffb考虑进来。该电路里,二极管反向恢复电压始终等于Vo。为便于计算,我们把二极管电流设定为平均电流即输出电流Io.。

参考上面的波形图,先得到:

通态损耗 $Pc=V_{F0}\times I_{O}+r_{D}\times I_{F}^{2}(RMS)$ 

截止损耗Pb=V<sub>R</sub>×I<sub>R</sub>(@V<sub>R</sub>)×Ton/Ts

开关损耗Ps=Pon+Poff=Pon+Poffb

=1/2× $I_F$ × ( $V_{FR}$ - $V_F$ ) ×tfr/Ts+1/4× $V_O$ × $I_{RRM}$ ×tb/Ts

注1: 二极管电流波形为周期梯形波,其平均值即为电源输出电流lo。

该三角波的占空比D1=Toff/Ts

电流有效值 $I_{F(RMS)}$ = $Io \times \sqrt{1/D1}$ 

注2:由于Poffa=1/2×V<sub>F</sub>×Irrm×ta/Ts,公式里V<sub>F</sub>比Poffb里的Vo差200多倍,去掉系数和ta、tb长短的差异,也有近100倍的差异。所以,忽略掉Poffa是可以的。

### BOOST电路二极管损耗计算



#### 举例1:

A:假设一电源,输入电压Vin=310VDC,输出电压Vo=381V,输出电流I<sub>O</sub>=5A。开关频率 50KHz,开关周期Ts=20000ns。占空比D=Ton/Ts=1-Vin/Vo=0.186,D1=1-D=0.814。 假设二极管的开通时的电流上升率(d ir/d t)和关断时的电流下降率(d if/d t)都设为500A/μs。

B:输出二极管使用晶恒公司的快恢复二极管MUR1560(15A 600V)。

参数为: 
$$V_{F0}$$
=1.3V,IR(@381V)=10uA; 
 tfr=150ns, $V_{FR}$ =16V, $I_{RRM}$ =13A, tb=50ns, 
 tfr/Ts=0.0075,tb/Ts=0.002, $r_{D}$ =50m $\Omega$ 
 $I_{F(RMS)}$ =Io× $\sqrt{1/D1}$  ≈5×1.1=5.5A

#### C: 损耗计算

通态损耗 Pc=V<sub>F0</sub>×I<sub>O</sub>+r<sub>D</sub>×I<sub>F<sup>2</sup>(RMS)</sub>≈1.3×5+0.05×5.5=6.5+1.5=8.0(W) 截止损耗 Pb=V<sub>R</sub>×I<sub>R</sub>(@V<sub>R</sub>)×Ton/Ts=381×10×10-6×0.186=7.08×10<sup>-6</sup>(W)(忽略不计) 开关损耗 Ps=Pon+Poffb

> Pon= $1/2 \times I_F \times (V_{FR} - V_F) \times tfr/Ts = 1/2 \times 5 \times 14.3 \times 0.0075 = 0.27W$ Poffb= $1/4 \times V_O \times I_{RRM} \times tb/Ts = 1/4 \times 381 \times 13 \times 0.0025 = 3.09W$ Ps=Pon+Poffb=3.36W

#### 总损耗 P<sub>D</sub>=Pc+Ps=11.36W

结论: 1. 对于快恢复二极管,损耗只计算Pc和Poffb即可。

2. 开关损耗比较大。



#### 提示:

快恢复二极管的 $V_F$ 、 $V_{FR}$ 、tfr、trr(tb)、 $I_{RRM}$ 随着不同的工作条件是变化的。计算二极管损耗时要确定正向电流 $I_F$ 、反向恢复电压 $V_{RR}$ 、二极管电流变化率 di/dt , 二极管的实际结温 $T_{VJ}$ 。

- trr随着I<sub>F</sub>、V<sub>RR</sub>、T<sub>VJ</sub>的增加而增加,随着di /dt的增加而减小
- 2 I<sub>RRM</sub>随着I<sub>F</sub>、T<sub>VJ</sub>、V<sub>RR</sub>、di /dt的增加而增加
- 3 V<sub>F</sub>随着T<sub>VJ</sub>的上升而减小
- V<sub>FR</sub>随着di /dt的增加而增加
- 5 tfr随着di /dt的增加而减小。



#### 举例2:

A:电源条件同举例1。

B:输出二极管使用晶恒SIC肖特基SC1512。

 $V_{F0} = 1.2V$  ,  $I_{R}$  (@381V) = 10uA;

tfr=150ns ,  $V_{FR}$ =6.0V ,  $I_{RRM}$ =2A , tb=25ns

tfr/Ts=0.0075, tb/Ts=0.00125

 $r_D = 50 \text{m}\Omega$ 

截止损耗参考举例1,忽略

开关损耗Ps=Pon+Poffb

Pon= $1/2 \times I_F \times (V_{FR}-V_F) \times tfr/Ts = 1/2 \times 5 \times 6.5 \times 0.0075 \approx 0.09W$ 

Poffb= $1/4 \times Vo \times I_{RRM} \times tb/Ts = 1/4 \times 381 \times 2 \times 0.00125 \approx 0.24W$ 

Ps=Pon+Poffb=0.33W。

总损耗Pp=Pc+Pb=7.83W

结论: 1. SIC肖特基的损耗小于快恢复二极管的损耗。

2. 对于SIC肖特基二极管, 损耗只计算Pc。



### 高压BOOST电路二极管损耗分析总结

- 01 SIC肖特基二极管的损耗主要来自Pc。
- 02 快恢复二极管的损耗主要来自Pc和Ps里面的Poffb。
- 03 满足设计条件下,尽量选用SIC肖特基二极管。
- 04 尽量选用V<sub>F</sub>低的二极管。
- 05 对快恢复二极管,要减小Ps,可选择trr短,I<sub>RRM</sub>小的软恢复产品。



#### BOOST二极管损耗计算公式

#### A: 快恢复二极管

$$Pc=V_F \times Io + r_D \times I_F^2_{(RMS)}$$

$$Ps=1/4 \times V_{RR} \times I_{RRM} \times tb/Ts$$

#### B:SIC肖特基二极管

$$Pc=V_{F0}\times I_0+r_D\times I_F^2_{(RMS)}$$



#### 二极管的选用原则



二极管的总损耗主要来自通态损耗和开关损耗。



肖特基二极管的通态损耗和开关损耗都优于快恢复二极管,优先选择。



当温度高时(100℃),肖特基二极管的截止损耗的影响必须考虑。



对于快恢复二极管,要降低开关损耗,应选择trr小的,但trr小,V<sub>F</sub>就增加,所以,对损耗的影响,要折中考虑。一般对于几十KHZ的电源,HER(75ns)的产品就可以了。

#### 举例:

一单端反激开关电源20V, 1.5A。输出整流二极管分别使用SKY SR5200和 SR5250, 快恢复二极管HER504G和SF56G, 考察转换效率。

| Item    | Туре | VF@1.5A(V) | trr(ns) | Pin(W) | Pout(W) | Efficiency(%) |
|---------|------|------------|---------|--------|---------|---------------|
| SR5200  | SKY  | 0.70       | 1       | 35.7   |         | 84.00%        |
| SR5250  | SKY  | 0.742      | 1       | 35.9   | 30      | 83.60%        |
| HER504G | FRD  | 0.748      | 75      | 36     |         | 83.30%        |
| SF56G   | UFRD | 0.89       | 35      | 36.3   |         | 82.60%        |

测试结果符合前面的计算结论。

## 05

## 晶恒二极管在电源效率提升中的应用

因为**肖特基二极管**(SKY) 是输出整流最为理想的**首选器件**,而晶恒电子又素以生产肖特基二极管闻名,接下来让我们探讨一下晶恒二极管在电源效率提升中的应用。

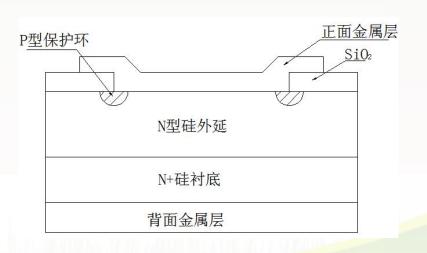
晶恒是国内最早研制和批量生产肖特基芯片和成品的公司之一,早在上世纪70年代,就研制出了国内第一支肖特基二极管,90年代初,开始批量生产民用肖特基芯片和成品。是军用肖特基产品定点单位。





普通肖特基 二极管 超低VF肖特基二极管

SIC肖特基二极管




## 7.普通首特基二级管

#### 芯片特点:

- 1 半导体-金属势垒EPI结构,低压采用Mo势垒,高压采用Pt-Au势垒.
- 2 单载流子(电子)导电,没有存储电荷复合效应,开关速度快。
- 3 P型保护环结构
- 4 低IR、低VF
- 5 高结温
- 6 高抗ESD和R/C能力
- 7 低成本,高可靠,一般应用。
- 8 芯片全部在宇航级生产线上制造

无法解决VF和IR的互换问题。





## 7.普通首特基二级管

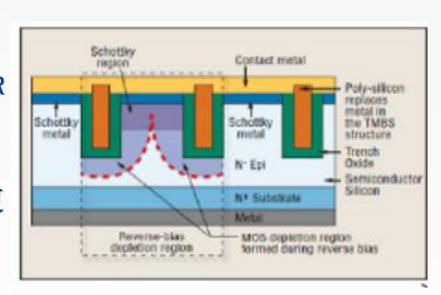
#### 制造:

采用环保、高端封装树脂成品管100%过回流焊芯片批100%抽样高温检测无卤产品100%批次检测



## 7. 普通首特基二级管

电流: 0.5A--60A 电压: 20V--250V


| 轴向  | R-1, D0-41, D0-15, D0-201AD, R-6                                             |  |
|-----|------------------------------------------------------------------------------|--|
| 贴片  | SOD123, SOD123FL, SMA, SMB, SMC, TO277<br>SMAFL, SMBFL, SMCFL, TO263, TO252等 |  |
| 大功率 | T0220AC, T0220AB, T0252, T0263<br>IT0220AC, IT0220AB, T0-247                 |  |



## 2. 遊低VF有特基二級管

#### 产品特点:芯片

- 1 Trench (深沟槽)技术,解决了VF和IR 互换问题。
- 2 超低VF
- 3 大电流密度。同样尺寸chip可以通过更 大电流。
- 4 低IR
- 5 高抗ESD和R/C能力
- 6 高结温
- 7 高可靠性。



电源满足六级能效的首选产品

有效降低正向损耗,提升电源转换效率!



## 2. 遊低VF有特基二級管

#### 制造:

采用低应力、环保、高端封装树脂 成品管100%过回流焊 芯片批100%抽样高温检测

无卤产品100%批次检测



## 2. 遊低VF有特基二級管

| VR      | 善通SKY | 超低VFSKY | VF降低率  |
|---------|-------|---------|--------|
| 40V/45V | 0.55V | 0.45V   | 18.20% |
| 60V     | 0.65V | 0.48V   | 26.10% |
| 80V     | 0.80V | 0.55V   | 31.20% |
| 100V    | 0.80V | 0.58V   | 27.50% |
| 150V    | 0.90V | 0.77V   | 14.40% |
| 200V    | 0.95V | 0.80V   | 15.70% |



## 案例1---5A,100V超低正向肖特基

做为2016年度销量最好的SR5100SL,已经被国内十几家知名客户选用,月销量300万只。该品种的典型参数如下表,VF降低30%以上。适用于12V输出电源,可提高2%以上的满载效率。

| PARAMETER | SR5100<br>(普通) | SR5100SL<br>(超低VF) |
|-----------|----------------|--------------------|
| IF        | 5A             | 5A                 |
| VF@IF=5A  | V8.0           | 0.55V              |
| VR        | 110V           | 110V               |





## 案例2-10A,45V 低正向肖特基

SP10U45L-T是2A,5V智能手充的代表性产品,既保持了低的正向压降,同时可适应温升高的应用环境。该产品同时将反向电压提高到50V以上,增强了应用过程中的安全性。超薄超小封装,可节省您的设计空间。可提高2%以上的满载效率。

| PARAMETER | SP10U45 | SP10U45L-T |  |
|-----------|---------|------------|--|
|           | (普通)    | (超低VF)     |  |
| IF        | 10A     | 10A        |  |
| VF@IF=10A | 0.52V   | 0.43V      |  |
| VR        | 48V     | 55V        |  |





## 案例3——20A,100V 低正向肖特基

此款产品是2016年市场热点产品,是满足12V大功率电源六级能效要求的代表品种。额定电流下,正向压降比常规肖特基低近30%。采用最先进的沟槽制造工艺,可提高2%以上的满载效率。

| PARAMETER | SR20100CT | SR20100SLCT |  |
|-----------|-----------|-------------|--|
|           | (普通)      | (超低VF)      |  |
| IF        | 20A       | 20A         |  |
| VF@IF=10A | 0.81      | 0.57        |  |
| VR        | 110       | 110         |  |





## 超低VF肖特基二极管产品介绍

电流: 1A--40A

电压: 20V--200V

典型型号: SR340L, SS510L, SP10U45L, SP15U50L, SRF20100LCT等


封装:

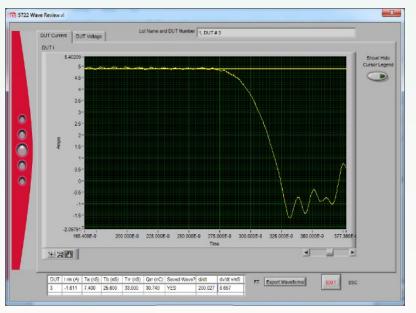
| 轴向  | DO-41, DO-15, DO-201AD                               |  |
|-----|------------------------------------------------------|--|
| 贴片  | SOD123, SOD123F, SMA, SMB, SMC, TO277                |  |
| 大功率 | T0220AC, T0220AB, IT0220AC, IT0220AB<br>T0252, T0263 |  |




## 3. SIC有特基二级管

#### 使用SIC材料作为衬底制成的具有肖特基特性的二极管。





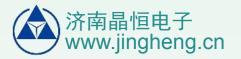




- 1) Qrr小。大了, 二极管开关损耗大。
- 2) Irrm小。大了,与之配对的MOSFET/IGBT的电流应力和导通损耗大,也即转换效率低。
- 3) ta/tb(从Irrm到0.25Irrm的时间)长,具有不陡峭的、钉状光滑的反向恢复波形。tb长,从而有更小的di/dt.在寄生电感Ls相等的情况下,产生更小的Vrp(电压尖峰),从而降低EMI。



#### SC1006和MUR1060反向恢复特性对比






SC1006 MUR1060

| 产品      | Irrm          | Та     | Tb     | Trr    | Qrr       |
|---------|---------------|--------|--------|--------|-----------|
| SC1006  | 006 1.611A 7. |        | 25.6ns | 33ns   | 30.740nc  |
| MUR1060 | 4.258A        | 16.2ns | 44.0ns | 60.2ns | 111.677nc |

结论: SC1006的Irrm、Tb/Ta、Qrr都优于MUR1660; 使用SC1006能得到较高的转换效率和好的EMI特性。



#### SiC肖特基二极管技术参数表

| 封装形式             | 产品型号           | 绝对最大额定值<br>I <sub>FSM</sub> T <sub>stg</sub> |                 | 正向电压V <sub>F</sub>  | 反向漏电                  | 反向电压V <sub>R</sub>    |
|------------------|----------------|----------------------------------------------|-----------------|---------------------|-----------------------|-----------------------|
| CMD              | 24/2000/       | ο Δ                                          |                 | I <sub>F</sub> =2A  | V <sub>R</sub> =2000V | I <sub>R</sub> =0.1mA |
| SMB              | 2A/2000V       | 8A                                           | -55°C∼+150°C    | ≤1.8V               | ≤0.05mA               | ≥2500V                |
|                  | 6A/1200V       | 9A                                           | FF°0 14F0°0     | I <sub>F</sub> =2A  | V <sub>R</sub> =1200V | I <sub>R</sub> =0.1mA |
|                  | 0A/1200V       |                                              | -55°C∼+150°C    | ≤1.8V               | ≤0.05mA               | ≥1400V                |
| TO-252           | 104/600\/      | 40A                                          | -55°C∼+150°C    | I <sub>F</sub> =10A | V <sub>R</sub> =600V  | I <sub>R</sub> =0.1mA |
| TO-220           | 10A/600V       |                                              |                 | ≤1.8V               | ≤0.05mA               | ≥700V                 |
|                  | 10A/1200V      | 40A                                          | -55°C∼+150°C    | I <sub>F</sub> =10A | V <sub>R</sub> =1200V | I <sub>R</sub> =0.1mA |
|                  |                |                                              |                 | ≤1.8V               | ≤0.05mA               | ≥1400V                |
|                  | 15A/1200V 60   | 60A                                          | -55°C∼+150°C    | I <sub>F</sub> =15A | V <sub>R</sub> =1200V | I <sub>R</sub> =0.1mA |
|                  |                | OUA                                          |                 | ≤1.8V               | ≤0.05mA               | ≥1400V                |
| TO 220           | 20A/600V 80    | 80A                                          | 60A             | I <sub>F</sub> =20A | V <sub>R</sub> =600V  | I <sub>R</sub> =0.2mA |
| TO-220<br>TO-263 | 20A/000V       | 20A/600V   80A   -55 C                       | -55 C/ 9+ 150 C | ≤1.8V               | ≤0.10mA               | ≥700V                 |
| TO-263<br>TO-247 | 25A/1700V      | 100A                                         | -55°C∼+150°C    | I <sub>F</sub> =25A | V <sub>R</sub> =1700V | I <sub>R</sub> =0.2mA |
| 10-247           | 25A/1700V      | 25A/1/00V   100A                             |                 | ≤2V                 | ≤0.10mA               | ≥2000V                |
|                  | 204/6001/ 1204 | 1204                                         | -55°C~+150°C    | I <sub>F</sub> =30A | V <sub>R</sub> =600V  | I <sub>R</sub> =0.2mA |
|                  | 30A/000V       | 30A/600V   120A   -                          |                 | ≤1.8V               | ≤0.10mA               | ≥700V                 |





晶恒MUR系列产品,采用EPI芯片,wire-bond封装技术,国军标生产线制造,具有VF低,抗反向浪涌电流能力强,低应力封装的特点。批量应用于BOSCH电机、光伏逆变等大功率电源上。

#### 大功率MUR系列产品介绍

电流: 6A—100A

电压: 200V—1200V

封装: ITO-220AC, ITO-220AB, TO-220AC, TO-220AB TO-247 TO-3P

典型型号: MUR640, MUR840, MUR1060, MUR2060, MUR8120等







## 联系我们

济南总部 Headquarters

地址:济南市和平路51号 电话:0531-86943657

传真: 0531-86412824

邮箱: sale@jinghenggroup.com

网址: www.jingheng.cn/

www.jinghenggroup en.alibaba.com

## 晶恒工业园 Jingheng Industry Park

地址:济南市长清区晶恒路、号



深圳办事处 Shenzhen Branch Office

地址:深圳市福田区中康路曼越城州区公法1003室

电话: 0755-88391085 传真: 0755-88391025

厦门办事处 Xiamen Branch Office

地址:厦门市集美区杏林东路宁海一里46号

电话: 86-592-5529106 传真: 86-592-5529126



# THANK