
二極管關斷伴隨非常大的dv/dt,因此在很大的di/dt條件 下,會產生很高的反向恢復電流尖峰。這些尖峰會比穩 態開關電流幅值大十倍以上。該大電流會使MOSFET損 耗大大增加、發熱嚴重。MOSFET結溫的升高會降低其 dv/dt的能力。在極端情況下,損壞MOSFET,使整個系 統失效。在特殊應用中,負載會從空載突變到過載,為 了能夠保持系統可靠性,系統應該能夠在更惡劣的工作 環境中運行。
圖10和圖11給出了過載時功率MOSFET開關波形。電流 尖峰發生在開通和關斷的瞬間。可以被認作是一種“暫 時直通”。圖12給出了過載時LLC諧振變換器的簡化波 形,圖13給出了可能導致器件潛在失效問題的工作模 式。
在t0 ~ t1時段,Q1導通,諧振電感電流Ir為正。由于 MOSFET Q1處于導通狀態,諧振電流流過MOSFET Q1 溝道,次級二極管D1導通。Lm不參與諧振,Cr與Lr諧 振。能量由輸入端傳送到輸出端。
在t1 ~ t2時段,Q1門極驅動信號開通,Q2關斷,輸出電 流在t1時刻為零。兩個電感電流Ir 和 Im相等。次級二極 管都不導通,兩個輸出二極管反向偏置。能量從輸出電 容而不是輸入端往外傳輸。因為輸出端與變壓器隔離, Lm與Lr串聯參與諧振。
在t2 ~ t3時段,MOSFET Q1 依然施加門極信號,Q2關 斷。在這個時段內,諧振電感電流方向改變。電流從 MOSFET Q2的源極流向漏極。D2開始導通,D1反向偏 置,輸出電流開始增加。能量回流到輸入端。
在t3 ~ t4時段,關斷MOSFET Q1和Q2的門極信號,諧振 電感電流開始流過MOSFET Q2的體二極管,這就為 MOSFET Q1創造了ZCS條件。
在t4 ~ t5時段,MOSFET Q2開通,流過一個很大的直通 電流,該電流由MOSFET Q1體二極管的反向恢復電流 產生。這不是偶然的直通,因為高、低端MOSFET正常 施加了門極信號;有如直通電流一樣,它會影響到該開 關電源。這會形成很高的反向恢復dv/dt,時常會擊穿 MOSFET Q2。這樣就會導致MOSFET失效,當使用的 MOSFET體二極管的反向恢復特性較差時,這種失效機 理會更加嚴重。
短路失效模式
最壞情況為短路。短路時,MOSFET導通電流非常高 (理論上無限高),頻率也會降低。當發生短路時,諧 振回路中Lm被旁路。LLC諧振變換器可以簡化為由Cr和 Lr組成的諧振電路,因為Cr只與Lr發生諧振。因此圖12 省略了t1 ~ t2時段,短路時次級二極管在CCM模式下連續 導通。短路狀態下工作模式幾乎與過載狀態下一樣,但 是短路狀態更糟糕,因為流經開關體二極管的反向恢復 電流更大。
圖14和圖15給出了短路時功率MOSFET的開關波形。短 路的波形與過載下的波形類似,但是其電流的等級更 高,MOSFET結溫度更高,更容易失效。
4 功率MOSFET失效機理
體二極管反向恢復dv/dt
二極管由通態到反向阻斷狀態的開關過程稱為反向恢 復。圖16給出了MOSFET體二極管反向恢復的波形。首 先體二極管正向導通,持續一段時間。這個時段中,二 極管P-N結積累電荷。當反向電壓加到二極管兩端時, 釋放儲存的電荷,回到阻斷狀態。釋放儲存電荷時會出 現以下兩種現象:流過一個大的反向電流和重構。在該 過程中,大的反向恢復電流流過MOSFET的體二極管, 是因為MOSFET的導通溝道已經切斷。一些反向恢復電 流從N+源下流過。
如圖18和圖19所示,Rb表示一個小電阻。基本上,寄生 BJT的基極和發射極被源極金屬短路。因此,寄生BJT 不能被激活。然而實際中,這個小電阻作為基極電阻, 當大電流流過Rb時,Rb產生足夠的壓降使寄生BJT基極發射極正向偏置,觸發寄生BJT。一旦寄生BJT開通, 會產生一個熱點,更多的電流將涌入該點。負溫度系數 的BJT會使流過的電流越來越高。終導致器件失效。 圖17給出了體二極管反向恢復時MOSFET失效波形。電 流等級超過反向恢復電流峰值Irm時正好使器件失效。這 意味著峰值電流觸發了寄生BJT。圖20和圖21給出了由 體二極管反向恢復引起芯片失效的燒毀標記。燒毀點是 芯片脆弱的點,很容易就會形成熱點,或者需要恢復 過多儲存電荷。這取決于芯片設計,不同設計技術會有 所變化。
如果反向恢復過程開始前P-N結溫度高于室溫,則更容 易形成熱點。所以電流等級和初始結溫度是器件失效的 兩個重要的因素。影響反向恢復電流峰值的主要因素 有溫度、正向電流和di/dt。圖22給出了反向恢復電流峰 值與正向電流等級的對應曲線。如圖22所示,大限度 抑制體二極管導通,可以降低反向恢復電流峰值。如果 di/dt增大,反向恢復電流峰值也增大。在LLC諧振變換 器中,功率MOSFET體二極管的di/dt與另一互補功率開 關的開通速度有關。所以降低其開通速度也可以減小 di/dt。
擊穿dv/dt
另一種失效模式是擊穿dv/dt。它是擊穿和靜態dv/dt的組 合。功率器件同時承受雪崩電流和位移電流。如果開關 過程非常快,在體二極管反向恢復過程中,漏源極電壓 可能超過大額定值。例如,在圖16中,漏源極電壓 大值超過了570V ,但器件為500V 額定電壓的 MOSFET。過高的電壓峰值使MOSFET進入擊穿模式, 位移電流通過P-N結。這就是雪崩擊穿的機理。另外, 過高的dv/dt會影響器件的失效點。dv/dt越大,建立起的 位移電流就越大。位移電流疊加到雪崩電流后,器件受 到傷害,導致失效。基本上,導致失效的根本原因是大 電流、高溫度引起的寄生BJT導通,但主要原因是體二 極管反向恢復或擊穿。實踐中,這兩種失效模式隨機發 生,有時同時發生。
5 解決方法
在啟動、過載或短路狀況下,過流保護方法有多種:
■增加開關頻率
■變頻控制以及 PWM控制
■采用分裂電容和鉗位二極管
為了實現這些方法,LLC諧振變換器需要增加額外的器件、改進控制電路或者重新進行散熱設計,這都增加了系統的成本。有一種更為簡單和高性價比的方法。由于體二極管在LLC諧振變換器中扮演了很重要的角色,它對失效機理至關重要,所以集中研究器件的體二極管特性是解決這個問題的好方法。越來越多的應用使用內嵌二極管作為關鍵的系統元件,因此體二極管的許多優勢得以實現。其中,金或鉑擴散和電子輻射是非常有效的 解決方法。這種方法可以控制載流子壽命,從而減少反 向恢復充電和反向恢復時間。隨著反向恢復充電的減 少,反向恢復電流峰值和觸發寄生BJT的可能性也隨之 降低。因此,在過流情況下,如過載或短路,這種帶有 改進的體二極管的新功率MOSFET可以提供更耐久、更 好的保護。
聲明:本內容為作者獨立觀點,不代表電源網。本網站原創內容,如需轉載,請注明出處;本網站轉載的內容(文章、圖片、視頻)等資料版權歸原作者所有。如我們采用了您不宜公開的文章或圖片,未能及時和您確認,避免給雙方造成不必要的經濟損失,請電郵聯系我們,以便迅速采取適當處理措施;歡迎投稿,郵箱∶editor@netbroad.com。
微信關注 | ||
![]() |
技術專題 | 更多>> | |
![]() |
技術專題之EMC |
![]() |
技術專題之PCB |